Учащимся

Педагогам

На заметку

Главная » Исторические обзоры » Эволюция представлений

К истории закона сохранения механической энергии

На первых этапах физики открывали отдельные следствия закона сохранения энергии, не подозревая о существовании общего закона. Первым следствием был закон рычага, который можно сформулировать так: произведение силы на расстояние, пройденное точкой приложения силы, есть величина постоянная. Это было известно еще Архимеду, Зная закон сохранения энергии в форме «количество полученной энергии равно затраченной работе», легко свести к нему закон рычага. Действительно, работа вычисляется как произведение силы на перемещение. Если это произведение постоянно, то, увеличивая путь, мы можем на столько же уменьшить силу и наоборот.

Далее обратимся к следующему открытию Галилея. Во время своих опытов с падением тел по наклонной плоскости Галилей обнаружил, что скорость, которую имеет тело у основания наклонной плоскости, не зависит от угла ее наклона, следовательно, от длины пути, а зависит лишь от высоты, с которой падает тело.

Это поразительное открытие заинтересовало Галилея, и он поставил задачу исследовать, существует ли независимость скорости от длины пути для криволинейных форм пути. С этой целью он изобрел маятник, получивший его имя.

Следующий шаг к открытию закона сохранения механической энергии сделал Гюйгенс. Он впервые поставил задачу исследовать законы механического движения системы тел. Изучение колебаний сложных маятников привело его к следующему заключению: «Если какие-нибудь тяжелые тела приходят в движение вследствие действия на них силы тяжести, то их общий центр тяжести не может подняться выше того уровня, на котором он находился в начале движения».

Важность этого результата была быстро осознана учеными. Немецкий философ и математик Готфрид Лейбниц (1646— 1716) обратил внимание на то, что из законов свободного падения следовала пропорциональность высоты, которой достигает колеблющееся тело при неизменной' массе, квадрату его скорости. Поскольку при колебании без трения высота, с которой падает тело, равна высоте поднятия, то, следовательно, сохраняется произведение . Лейбниц назвал это произведение «живой силой» и развил далее мысль о том. что Вселенная обладает сохраняющимся запасом «живых сил».

Откуда произошел термин «живая сила»? Непосредственный опыт показывал, что сила может быть вызвана покоящимся телом, например сжатой пружиной, телом, которое давит на опору и т. д. С другой стороны, силовое действие может быть произведено движущимся телом. Естественно было в первом статическом случае говорить просто о силе (мертвой), а во втором, чтобы подчеркнуть ее принадлежность к движению, изменению, о силе живой.

Следует заметить, что в некоторых курсах теоретической механики до сих пор сохраняется этот термин, и закон сохранения механической энергии фигурирует под именем «теоремы о живых силах».

Сохранение «живой силы» было установлено в опытах Гюйгенса с соударением шаров. В знаменитой 11-й теореме о соударениях тел Гюйгенс писал: «При ударе двух тел сумма произведений их масс на квадраты их скоростей одинакова до удара и после него».

Особое внимание уделили принципу сохранения живых сил Иоганн и Даниил Бернулли. В сочинении 1750 г. Даниил Бернулли рассматривает общий случай системы частиц, между которыми действует сила тяготения, и показывает, что независимо от путей, по которым перемещаются частицы, сумма их «живых сил» остается постоянной. «Природа,— заключает он,— никогда не изменяет великому закону сохранения живых сил».

Еще более глубокое представление мы находим в сочинении Иоганна Бернулли «Рассуждение о законах передачи движения». Он подчеркивает, что живая сила сохраняется вечно, что этот всеобщий закон природы действителен и в том случае, когда на первый взгляд наблюдаются отклонения от него. «Если, например,— пишет Бернулли,— тела не абсолютно упруги, то кажется, что при сжатии их, не сопровождающемся возвратом к начальному состоянию, часть живых сил утрачивается. Но мы должны себе представить, что это сжатие соответствует сгибанию упругой пружины, которой препятствуют разогнуться, так что она не отдает тех живых сил, которые были ей сообщены, но сохраняет их в себе».

Здесь ясное предчувствие перехода кинетической энергии в потенциальную энергию упругой деформации и внутреннюю энергию тела. Однако до четкого представления о потенциальной энергии и строгой формулировки закона сохранения механической энергии физике пришлось пройти более 100 лет. Понятие потенциальной энергии в четкой форме появилось в 1847 г. в книге великого немецкого физика Гельмгольца «О сохранении силы».

Кинетическую энергию Гельмгольц называл по-прежнему живой силой, потенциальная энергия появилась под именем «количества сил напряжения». Все многообразие форм энергии Гельмгольц сводил к этим двум формам. Закон сохранения энергия он представлял в двух формах. Первая — обобщенная форма: количество затраченной работы равно количеству полученной энергии. Вторая — частная в современной терминологии формулируется так: сумма кинетической и потенциальной энергии в замкнутой системе остается всегда постоянной.».

Следует отметить, что понятие работы сложилось раньше понятия энергии. Для измерения работы эталоном была работа поднятия груза определенной массы на определенную высоту. У Гельмгольца читаем: «Количество работы, которое получается или затрачивается, может быть, как известно, выражено как работа поднятия на определенную высоту h груза m; работа равна mgh... Чтобы подняться свободно на высоту h, тело должно обладать начальной скоростью ; эту же скорость тело получает при обратном падении на Землю. Таким образом,

».

Категория: Эволюция представлений
Форма входа
Логин:
Пароль:

Новости сайта

07.06.2013
О проведении ЕГЭ по физике и иностранным языкам
Согласно единому расписанию, 6 июня был проведен ЕГЭ по физике, являющийся предметом по выбору.
15.05.2013
Результаты досрочного этапа сдачи ЕГЭ по физике в СОШ 1423
Стали известны итоги досрочного этапа сдачи ЕГЭ по физике. Выпускники СОШ №1423 успешно справились с испытаниями.